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Motivation

m H5 Optimal Control
» disturbance error reduction
» sensor noise error reduction
m Hoo Optimal Control

» disturbance error reduction
» sensor noise error reduction
» tolerant to uncertainties — easier to formulate in RH o, than RH
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oo-norm of system is pretty useful
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Kalman-Yakubovich-Popov (KYP) Lemma

A
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1. The matrix A is Hurwitz and

Lemma: Suppose G(s) = [ } Then the following are equivalent conditions.

1Gloo < 1.
2. There exists a matrix X > 0 such that

[C*] [c D]+ [A*X%—XA XB

b <0

B*X -1 ’

m Very useful — relates transfer matrix (frequency domain) inequality to state space
conditions

m Convenient way to evaluate H, norm of transfer matrix
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Full State-Feedback 7., Gontrol

One of three formulations

Given system
T = Ax + Byu + Byw,
z=Cx+ Dyu+ Dyw.
Theorem Controller w = Kx internally stabilizes and minimizes |Gy, ;|| iff there
exists W, and X > 0 such that following optimization problem has solution
(A, By,) stabilizable

i
subject to
(AX + BW)+ " B, ((CX+DW)T
X >0, BT —~I DI <0,
(CX + D,W) Dy, —~I

with K = WXL
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Weighted Performance

For both H, and Hs control
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Frequency Dependent Weights

m Some signals may be more important than others
m Signals may not be measured in the same metric

m May be interested in keeping signals small in certain frequency range
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Frequency Dependent Weights

W'm Wd; Wn

m IV, specifies frequency content of r(¢) — Pilot models, etc.
m W, specifies frequency content of d(t) — gust models, road vibration, etc.

m W,,: specifies frequency content of sensor noise — comes from manufacturer.
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Frequency Dependent Weights

Wy

m W, defines the reciprocal of desired frequency content of w(t)
m Can be used to

> include control magnitude, rate constraints
» specify desired controller roll off — not excite high-frequency uncertain modes
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Frequency Dependent Weights

We

m W,: defines the reciprocal of desired error at each frequency
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Frequency Dependent Weights

W'm.

m WW,,: Defines the model for model-matching formulation
m Desired response to r(t) is given by respond of model W,

m E.g. second order response — can relate to rise time, overshoot, settling time
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H.. Loopshaping — P(jw)C(jw)

Define desired loop shape using weights

Develop conditions on the Bode plot of the open loop transfer function
m Sensitivity H%
m Steady-state errors: slope and magnitude at lim,, — 0
m Robust to sensor noise
m Disturbance rejection
m Controller roll off = not excite high-frequency modes of plant
m Robust to plant uncertainty

Look at Bode plot of L(jw) := P(jw)C(jw)
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Performance Specifications
0000000®0000

Frequency Domain Specifications

Constraints on the shape of L(jw)

Sensor noise, plant
uncertainty
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m Choose C(jw) to ensure |L(jw)| does not violate the constraints
m Slope =~ —1 at w, ensures PM =~ 90° stable if PM >0 —> /PC > —180°
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Plant Uncertainty

P(jw) = Po(jw)(1 + AP(jw))

Bode Diagram
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Performance Spe
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Sensor Characteristics

Noise spectrum

Wheel speed sensor
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Performance Specifications
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Reference Tracking

Bandlimited else conflicts with noise rejection

Spectrum of r(t) -
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Performance Specifications
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Disturbance Rejecton

Bandlimited else conflicts with noise rejection

Spectrum of d(t) .
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